Fairness Through Computationally-Bounded Awareness

We study the problem of fair classification within the versatile framework of Dwork et al. [ITCS '12], which assumes the existence of a metric that measures similarity between pairs of individuals. Unlike earlier work, we do not assume that the entire metric is known to the learning algorithm; instead, the learner can query this arbitrary metric a bounded number of times. We propose a new notion of fairness called metric multifairness and show how to achieve this notion in our setting. Metric multifairness is parameterized by a similarity metric $d$ on pairs of individuals to classify and a rich collection ${\cal C}$ of (possibly overlapping) "comparison sets" over pairs of individuals. At a high level, metric multifairness guarantees that similar subpopulations are treated similarly, as long as these subpopulations are identified within the class ${\cal C}$.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here