Fast Adaptive Weight Noise

19 Jul 2015  ·  Justin Bayer, Maximilian Karl, Daniela Korhammer, Patrick van der Smagt ·

Marginalising out uncertain quantities within the internal representations or parameters of neural networks is of central importance for a wide range of learning techniques, such as empirical, variational or full Bayesian methods. We set out to generalise fast dropout (Wang & Manning, 2013) to cover a wider variety of noise processes in neural networks. This leads to an efficient calculation of the marginal likelihood and predictive distribution which evades sampling and the consequential increase in training time due to highly variant gradient estimates. This allows us to approximate variational Bayes for the parameters of feed-forward neural networks. Inspired by the minimum description length principle, we also propose and experimentally verify the direct optimisation of the regularised predictive distribution. The methods yield results competitive with previous neural network based approaches and Gaussian processes on a wide range of regression tasks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods