Fast and Bayes-consistent nearest neighbors

7 Oct 2019  ·  Klim Efremenko, Aryeh Kontorovich, Moshe Noivirt ·

Research on nearest-neighbor methods tends to focus somewhat dichotomously either on the statistical or the computational aspects -- either on, say, Bayes consistency and rates of convergence or on techniques for speeding up the proximity search. This paper aims at bridging these realms: to reap the advantages of fast evaluation time while maintaining Bayes consistency, and further without sacrificing too much in the risk decay rate. We combine the locality-sensitive hashing (LSH) technique with a novel missing-mass argument to obtain a fast and Bayes-consistent classifier. Our algorithm's prediction runtime compares favorably against state of the art approximate NN methods, while maintaining Bayes-consistency and attaining rates comparable to minimax. On samples of size $n$ in $\R^d$, our pre-processing phase has runtime $O(d n \log n)$, while the evaluation phase has runtime $O(d\log n)$ per query point.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here