Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods

30 Jan 2023  ·  Gen Li, Yanxi Chen, Yuejie Chi, H. Vincent Poor, Yuxin Chen ·

Efficient computation of the optimal transport distance between two distributions serves as an algorithm subroutine that empowers various applications. This paper develops a scalable first-order optimization-based method that computes optimal transport to within $\varepsilon$ additive accuracy with runtime $\widetilde{O}( n^2/\varepsilon)$, where $n$ denotes the dimension of the probability distributions of interest. Our algorithm achieves the state-of-the-art computational guarantees among all first-order methods, while exhibiting favorable numerical performance compared to classical algorithms like Sinkhorn and Greenkhorn. Underlying our algorithm designs are two key elements: (a) converting the original problem into a bilinear minimax problem over probability distributions; (b) exploiting the extragradient idea -- in conjunction with entropy regularization and adaptive learning rates -- to accelerate convergence.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods