Fast Convergence for Langevin Diffusion with Manifold Structure

13 Feb 2020  ·  Ankur Moitra, Andrej Risteski ·

In this paper, we study the problem of sampling from distributions of the form p(x) \propto e^{-\beta f(x)} for some function f whose values and gradients we can query. This mode of access to f is natural in the scenarios in which such problems arise, for instance sampling from posteriors in parametric Bayesian models. Classical results show that a natural random walk, Langevin diffusion, mixes rapidly when f is convex. Unfortunately, even in simple examples, the applications listed above will entail working with functions f that are nonconvex -- for which sampling from p may in general require an exponential number of queries. In this paper, we focus on an aspect of nonconvexity relevant for modern machine learning applications: existence of invariances (symmetries) in the function f, as a result of which the distribution p will have manifolds of points with equal probability. First, we give a recipe for proving mixing time bounds for Langevin diffusion as a function of the geometry of these manifolds. Second, we specialize our arguments to classic matrix factorization-like Bayesian inference problems where we get noisy measurements A(XX^T), X \in R^{d \times k} of a low-rank matrix, i.e. f(X) = \|A(XX^T) - b\|^2_2, X \in R^{d \times k}, and \beta the inverse of the variance of the noise. Such functions f are invariant under orthogonal transformations, and include problems like matrix factorization, sensing, completion. Beyond sampling, Langevin dynamics is a popular toy model for studying stochastic gradient descent. Along these lines, we believe that our work is an important first step towards understanding how SGD behaves when there is a high degree of symmetry in the space of parameters the produce the same output.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.