Fast Convergence of Regularized Learning in Games

We show that natural classes of regularized learning algorithms with a form of recency bias achieve faster convergence rates to approximate efficiency and to coarse correlated equilibria in multiplayer normal form games. When each player in a game uses an algorithm from our class, their individual regret decays at $O(T^{-3/4})$, while the sum of utilities converges to an approximate optimum at $O(T^{-1})$--an improvement upon the worst case $O(T^{-1/2})$ rates. We show a black-box reduction for any algorithm in the class to achieve $\tilde{O}(T^{-1/2})$ rates against an adversary, while maintaining the faster rates against algorithms in the class. Our results extend those of [Rakhlin and Shridharan 2013] and [Daskalakis et al. 2014], who only analyzed two-player zero-sum games for specific algorithms.

PDF Abstract NeurIPS 2015 PDF NeurIPS 2015 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here