Fast cosmic web simulations with generative adversarial networks

Dark matter in the universe evolves through gravity to form a complex network of halos, filaments, sheets and voids, that is known as the cosmic web. Computational models of the underlying physical processes, such as classical N-body simulations, are extremely resource intensive, as they track the action of gravity in an expanding universe using billions of particles as tracers of the cosmic matter distribution. Therefore, upcoming cosmology experiments will face a computational bottleneck that may limit the exploitation of their full scientific potential. To address this challenge, we demonstrate the application of a machine learning technique called Generative Adversarial Networks (GAN) to learn models that can efficiently generate new, physically realistic realizations of the cosmic web. Our training set is a small, representative sample of 2D image snapshots from N-body simulations of size 500 and 100 Mpc. We show that the GAN-generated samples are qualitatively and quantitatively very similar to the originals. For the larger boxes of size 500 Mpc, it is very difficult to distinguish them visually. The agreement of the power spectrum $P_k$ is 1-2\% for most of the range, between $k=0.06$ and $k=0.4$. An important advantage of generating cosmic web realizations with a GAN is the considerable gains in terms of computation time. Each new sample generated by a GAN takes a fraction of a second, compared to the many hours needed by traditional N-body techniques. We anticipate that the use of generative models such as GANs will therefore play an important role in providing extremely fast and precise simulations of cosmic web in the era of large cosmological surveys, such as Euclid and Large Synoptic Survey Telescope (LSST).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods