Fast Distributed Coordinate Descent for Non-Strongly Convex Losses

We propose an efficient distributed randomized coordinate descent method for minimizing regularized non-strongly convex loss functions. The method attains the optimal $O(1/k^2)$ convergence rate, where $k$ is the iteration counter... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet