Fast Distribution To Real Regression

10 Nov 2013  ·  Junier B. Oliva, Willie Neiswanger, Barnabas Poczos, Jeff Schneider, Eric Xing ·

We study the problem of distribution to real-value regression, where one aims to regress a mapping $f$ that takes in a distribution input covariate $P\in \mathcal{I}$ (for a non-parametric family of distributions $\mathcal{I}$) and outputs a real-valued response $Y=f(P) + \epsilon$. This setting was recently studied, and a "Kernel-Kernel" estimator was introduced and shown to have a polynomial rate of convergence. However, evaluating a new prediction with the Kernel-Kernel estimator scales as $\Omega(N)$. This causes the difficult situation where a large amount of data may be necessary for a low estimation risk, but the computation cost of estimation becomes infeasible when the data-set is too large. To this end, we propose the Double-Basis estimator, which looks to alleviate this big data problem in two ways: first, the Double-Basis estimator is shown to have a computation complexity that is independent of the number of of instances $N$ when evaluating new predictions after training; secondly, the Double-Basis estimator is shown to have a fast rate of convergence for a general class of mappings $f\in\mathcal{F}$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here