Fast DPP Sampling for Nyström with Application to Kernel Methods

19 Mar 2016  ·  Chengtao Li, Stefanie Jegelka, Suvrit Sra ·

The Nystr\"om method has long been popular for scaling up kernel methods. Its theoretical guarantees and empirical performance rely critically on the quality of the landmarks selected. We study landmark selection for Nystr\"om using Determinantal Point Processes (DPPs), discrete probability models that allow tractable generation of diverse samples. We prove that landmarks selected via DPPs guarantee bounds on approximation errors; subsequently, we analyze implications for kernel ridge regression. Contrary to prior reservations due to cubic complexity of DPPsampling, we show that (under certain conditions) Markov chain DPP sampling requires only linear time in the size of the data. We present several empirical results that support our theoretical analysis, and demonstrate the superior performance of DPP-based landmark selection compared with existing approaches.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here