Fast Exploration with Simplified Models and Approximately Optimistic Planning in Model Based Reinforcement Learning

1 Jun 2018  ·  Ramtin Keramati, Jay Whang, Patrick Cho, Emma Brunskill ·

Humans learn to play video games significantly faster than the state-of-the-art reinforcement learning (RL) algorithms. People seem to build simple models that are easy to learn to support planning and strategic exploration. Inspired by this, we investigate two issues in leveraging model-based RL for sample efficiency. First we investigate how to perform strategic exploration when exact planning is not feasible and empirically show that optimistic Monte Carlo Tree Search outperforms posterior sampling methods. Second we show how to learn simple deterministic models to support fast learning using object representation. We illustrate the benefit of these ideas by introducing a novel algorithm, Strategic Object Oriented Reinforcement Learning (SOORL), that outperforms state-of-the-art algorithms in the game of Pitfall! in less than 50 episodes.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here