Fast Graph Attention Networks Using Effective Resistance Based Graph Sparsification

15 Jun 2020  ·  Rakshith S Srinivasa, Cao Xiao, Lucas Glass, Justin Romberg, Jimeng Sun ·

The attention mechanism has demonstrated superior performance for inference over nodes in graph neural networks (GNNs), however, they result in a high computational burden during both training and inference. We propose FastGAT, a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph. This results in a per-epoch time that is almost linear in the number of graph nodes as opposed to quadratic. We theoretically prove that spectral sparsification preserves the features computed by the GAT model, thereby justifying our algorithm. We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks under both inductive and transductive settings. FastGAT can dramatically reduce (up to \textbf{10x}) the computational time and memory requirements, allowing the usage of attention based GNNs on large graphs.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods