Paper

Graph Metric Learning via Gershgorin Disc Alignment

We propose a fast general projection-free metric learning framework, where the minimization objective $\min_{\textbf{M} \in \mathcal{S}} Q(\textbf{M})$ is a convex differentiable function of the metric matrix $\textbf{M}$, and $\textbf{M}$ resides in the set $\mathcal{S}$ of generalized graph Laplacian matrices for connected graphs with positive edge weights and node degrees. Unlike low-rank metric matrices common in the literature, $\mathcal{S}$ includes the important positive-diagonal-only matrices as a special case in the limit. The key idea for fast optimization is to rewrite the positive definite cone constraint in $\mathcal{S}$ as signal-adaptive linear constraints via Gershgorin disc alignment, so that the alternating optimization of the diagonal and off-diagonal terms in $\textbf{M}$ can be solved efficiently as linear programs via Frank-Wolfe iterations. We prove that the Gershgorin discs can be aligned perfectly using the first eigenvector $\textbf{v}$ of $\textbf{M}$, which we update iteratively using Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) with warm start as diagonal / off-diagonal terms are optimized. Experiments show that our efficiently computed graph metric matrices outperform metrics learned using competing methods in terms of classification tasks.

Results in Papers With Code
(↓ scroll down to see all results)