Fast Learning of Relational Dependency Networks

28 Oct 2014  ·  Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick, Xiaoqian Yin, Yan Sun ·

A Relational Dependency Network (RDN) is a directed graphical model widely used for multi-relational data. These networks allow cyclic dependencies, necessary to represent relational autocorrelations. We describe an approach for learning both the RDN's structure and its parameters, given an input relational database: First learn a Bayesian network (BN), then transform the Bayesian network to an RDN. Thus fast Bayes net learning can provide fast RDN learning. The BN-to-RDN transform comprises a simple, local adjustment of the Bayes net structure and a closed-form transform of the Bayes net parameters. This method can learn an RDN for a dataset with a million tuples in minutes. We empirically compare our approach to state-of-the art RDN learning methods that use functional gradient boosting, on five benchmark datasets. Learning RDNs via BNs scales much better to large datasets than learning RDNs with boosting, and provides competitive accuracy in predictions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here