Fast Light Field Reconstruction With Deep Coarse-To-Fine Modeling of Spatial-Angular Clues

Densely-sampled light fields (LFs) are beneficial to many applications such as depth inference and post-capture refocusing. However, it is costly and challenging to capture them. In this paper, we propose a learning based algorithm to reconstruct a densely-sampled LF fast and accurately from a sparsely-sampled LF in one forward pass. Our method uses computationally efficient convolutions to deeply characterize the high dimensional spatial-angular clues in a coarse-tofine manner. Specifically, our end-to-end model first synthesizes a set of intermediate novel sub-aperture images (SAIs) by exploring the coarse characteristics of the sparsely-sampled LF input with spatial-angular alternating convolutions. Then, the synthesized intermediate novel SAIs are efficiently refined by further recovering the fine relations from all SAIs via guided residual learning and stride-2 4-D convolutions. Experimental results on extensive real-world and synthetic LF images show that our model can provide more than 3 dB advantage in reconstruction quality in average than the state-of-the-art methods while being computationally faster by a factor of 30. Besides, more accurate depth can be inferred from the reconstructed densely-sampled LFs by our method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here