Fast Low-rank Metric Learning for Large-scale and High-dimensional Data

NeurIPS 2019  ·  Han Liu, Zhizhong Han, Yu-Shen Liu, Ming Gu ·

Low-rank metric learning aims to learn better discrimination of data subject to low-rank constraints. It keeps the intrinsic low-rank structure of datasets and reduces the time cost and memory usage in metric learning. However, it is still a challenge for current methods to handle datasets with both high dimensions and large numbers of samples. To address this issue, we present a novel fast low-rank metric learning (FLRML) method.FLRML casts the low-rank metric learning problem into an unconstrained optimization on the Stiefel manifold, which can be efficiently solved by searching along the descent curves of the manifold.FLRML significantly reduces the complexity and memory usage in optimization, which makes the method scalable to both high dimensions and large numbers of samples.Furthermore, we introduce a mini-batch version of FLRML to make the method scalable to larger datasets which are hard to be loaded and decomposed in limited memory. The outperforming experimental results show that our method is with high accuracy and much faster than the state-of-the-art methods under several benchmarks with large numbers of high-dimensional data. Code has been made available at https://github.com/highan911/FLRML

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here