Fast Polynomial Kernel Classification for Massive Data

24 Nov 2019  ·  Jinshan Zeng, Minrun Wu, Shao-Bo Lin, Ding-Xuan Zhou ·

In the era of big data, it is desired to develop efficient machine learning algorithms to tackle massive data challenges such as storage bottleneck, algorithmic scalability, and interpretability. In this paper, we develop a novel efficient classification algorithm, called fast polynomial kernel classification (FPC), to conquer the scalability and storage challenges. Our main tools are a suitable selected feature mapping based on polynomial kernels and an alternating direction method of multipliers (ADMM) algorithm for a related non-smooth convex optimization problem. Fast learning rates as well as feasibility verifications including the efficiency of an ADMM solver with convergence guarantees and the selection of center points are established to justify theoretical behaviors of FPC. Our theoretical assertions are verified by a series of simulations and real data applications. Numerical results demonstrate that FPC significantly reduces the computational burden and storage memory of existing learning schemes such as support vector machines, Nystr\"{o}m and random feature methods, without sacrificing their generalization abilities much.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods