Fast recovery from a union of subspaces

NeurIPS 2016  ·  Chinmay Hegde, Piotr Indyk, Ludwig Schmidt ·

We address the problem of recovering a high-dimensional but structured vector from linear observations in a general setting where the vector can come from an arbitrary union of subspaces. This setup includes well-studied problems such as compressive sensing and low-rank matrix recovery. We show how to design more efficient algorithms for the union-of subspace recovery problem by using *approximate* projections. Instantiating our general framework for the low-rank matrix recovery problem gives the fastest provable running time for an algorithm with optimal sample complexity. Moreover, we give fast approximate projections for 2D histograms, another well-studied low-dimensional model of data. We complement our theoretical results with experiments demonstrating that our framework also leads to improved time and sample complexity empirically.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here