Online Learning with Cumulative Oversampling: Application to Budgeted Influence Maximization

24 Apr 2020  ·  Shatian Wang, Shuoguang Yang, Zhen Xu, Van-Anh Truong ·

We propose a cumulative oversampling (CO) method for online learning. Our key idea is to sample parameter estimations from the updated belief space once in each round (similar to Thompson Sampling), and utilize the cumulative samples up to the current round to construct optimistic parameter estimations that asymptotically concentrate around the true parameters as tighter upper confidence bounds compared to the ones constructed with standard UCB methods. We apply CO to a novel budgeted variant of the Influence Maximization (IM) semi-bandits with linear generalization of edge weights, whose offline problem is NP-hard. Combining CO with the oracle we design for the offline problem, our online learning algorithm simultaneously tackles budget allocation, parameter learning, and reward maximization. We show that for IM semi-bandits, our CO-based algorithm achieves a scaled regret comparable to that of the UCB-based algorithms in theory, and performs on par with Thompson Sampling in numerical experiments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here