Faster Algorithms for Testing under Conditional Sampling

There has been considerable recent interest in distribution-tests whose run-time and sample requirements are sublinear in the domain-size $k$. We study two of the most important tests under the conditional-sampling model where each query specifies a subset $S$ of the domain, and the response is a sample drawn from $S$ according to the underlying distribution. For identity testing, which asks whether the underlying distribution equals a specific given distribution or $\epsilon$-differs from it, we reduce the known time and sample complexities from $\tilde{\mathcal{O}}(\epsilon^{-4})$ to $\tilde{\mathcal{O}}(\epsilon^{-2})$, thereby matching the information theoretic lower bound. For closeness testing, which asks whether two distributions underlying observed data sets are equal or different, we reduce existing complexity from $\tilde{\mathcal{O}}(\epsilon^{-4} \log^5 k)$ to an even sub-logarithmic $\tilde{\mathcal{O}}(\epsilon^{-5} \log \log k)$ thus providing a better bound to an open problem in Bertinoro Workshop on Sublinear Algorithms [Fisher, 2004].

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here