Faster Clustering via Non-Backtracking Random Walks

26 Aug 2017  ·  Brian Rappaport, Anuththari Gamage, Shuchin Aeron ·

This paper presents VEC-NBT, a variation on the unsupervised graph clustering technique VEC, which improves upon the performance of the original algorithm significantly for sparse graphs. VEC employs a novel application of the state-of-the-art word2vec model to embed a graph in Euclidean space via random walks on the nodes of the graph. In VEC-NBT, we modify the original algorithm to use a non-backtracking random walk instead of the normal backtracking random walk used in VEC. We introduce a modification to a non-backtracking random walk, which we call a begrudgingly-backtracking random walk, and show empirically that using this model of random walks for VEC-NBT requires shorter walks on the graph to obtain results with comparable or greater accuracy than VEC, especially for sparser graphs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here