Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling

19 Oct 2020  ·  Difan Zou, Pan Xu, Quanquan Gu ·

We provide a new convergence analysis of stochastic gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave. At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain. Under certain conditions on the target distribution, we prove that $\tilde O(d^4\epsilon^{-2})$ stochastic gradient evaluations suffice to guarantee $\epsilon$-sampling error in terms of the total variation distance, where $d$ is the problem dimension. This improves existing results on the convergence rate of SGLD (Raginsky et al., 2017; Xu et al., 2018). We further show that provided an additional Hessian Lipschitz condition on the log-density function, SGLD is guaranteed to achieve $\epsilon$-sampling error within $\tilde O(d^{15/4}\epsilon^{-3/2})$ stochastic gradient evaluations. Our proof technique provides a new way to study the convergence of Langevin-based algorithms and sheds some light on the design of fast stochastic gradient-based sampling algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here