FASText: Efficient Unconstrained Scene Text Detector

ICCV 2015  ·  Michal Busta, Lukas Neumann, Jiri Matas ·

We propose a novel easy-to-implement stroke detector based on an efficient pixel intensity comparison to surrounding pixels. Stroke-specific keypoints are efficiently detected and text fragments are subsequently extracted by local thresholding guided by keypoint properties. Classification based on effectively calculated features then eliminates non-text regions. The stroke-specific keypoints produce 2 times less region segmentations and still detect 25% more characters than the commonly exploited MSER detector and the process is 4 times faster. After a novel efficient classification step, the number of regions is reduced to 7 times less than the standard method and is still almost 3 times faster. All stages of the proposed pipeline are scale- and rotation-invariant and support a wide variety of scripts (Latin, Hebrew, Chinese, etc.) and fonts. When the proposed detector is plugged into a scene text localization and recognition pipeline, a state-of-the-art text localization accuracy is maintained whilst the processing time is significantly reduced.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here