Paper

FAT Forensics: A Python Toolbox for Algorithmic Fairness, Accountability and Transparency

Today, artificial intelligence systems driven by machine learning algorithms can be in a position to take important, and sometimes legally binding, decisions about our everyday lives. In many cases, however, these systems and their actions are neither regulated nor certified. To help counter the potential harm that such algorithms can cause we developed an open source toolbox that can analyse selected fairness, accountability and transparency aspects of the machine learning process: data (and their features), models and predictions, allowing to automatically and objectively report them to relevant stakeholders. In this paper we describe the design, scope, usage and impact of this Python package, which is published under the 3-Clause BSD open source licence.

Results in Papers With Code
(↓ scroll down to see all results)