FBK-HUPBA Submission to the EPIC-Kitchens Action Recognition 2020 Challenge

24 Jun 2020Swathikiran SudhakaranSergio EscaleraOswald Lanz

In this report we describe the technical details of our submission to the EPIC-Kitchens Action Recognition 2020 Challenge. To participate in the challenge we deployed spatio-temporal feature extraction and aggregation models we have developed recently: Gate-Shift Module (GSM) [1] and EgoACO, an extension of Long Short-Term Attention (LSTA) [2]... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet