Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples

Image compression-based approaches for defending against the adversarial-example attacks, which threaten the safety use of deep neural networks (DNN), have been investigated recently. However, prior works mainly rely on directly tuning parameters like compression rate, to blindly reduce image features, thereby lacking guarantee on both defense efficiency (i.e. accuracy of polluted images) and classification accuracy of benign images, after applying defense methods... (read more)

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet