Feature Interactions in XGBoost

11 Jul 2020  ·  Kshitij Goyal, Sebastijan Dumancic, Hendrik Blockeel ·

In this paper, we investigate how feature interactions can be identified to be used as constraints in the gradient boosting tree models using XGBoost's implementation. Our results show that accurate identification of these constraints can help improve the performance of baseline XGBoost model significantly. Further, the improvement in the model structure can also lead to better interpretability.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here