Federated Contrastive Representation Learning with Feature Fusion and Neighborhood Matching

29 Sep 2021  ·  Yawen Wu, Zhepeng Wang, Dewen Zeng, Meng Li, Yiyu Shi, Jingtong Hu ·

Federated learning (FL) enables distributed clients to learn a shared model for prediction while keeping the training data local on each client. However, existing FL requires fully-labeled data for training, which is inconvenient or sometimes infeasible to obtain due to the high labeling cost and the requirement of expertise. The lack of labels makes FL impractical in many realistic settings. Self-supervised learning can address this challenge by learning from unlabeled data such that FL can be widely used. Contrastive learning (CL), a self-supervised learning approach, can effectively learn data representations from unlabeled data. However, the distributed data collected on clients are usually not independent and identically distributed (non-IID) among clients, and each client may only have few classes of data, which degrades the performance of CL and learned representations. To tackle this problem, we propose a federated contrastive learning framework consisting of two approaches: feature fusion and neighborhood matching, by which a unified feature space among clients is learned for better data representations. Feature fusion provides remote features as accurate contrastive information to each client for better local learning. Neighborhood matching further aligns each client’s local features to the remote features such that well-clustered features among clients can be learned. Extensive experiments show the effectiveness of the proposed framework. It outperforms other methods by 11% on IID data and matches the performance of centralized learning.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods