Federated Domain Adaptation for ASR with Full Self-Supervision

30 Mar 2022  ·  Junteng Jia, Jay Mahadeokar, Weiyi Zheng, Yuan Shangguan, Ozlem Kalinli, Frank Seide ·

Cross-device federated learning (FL) protects user privacy by collaboratively training a model on user devices, therefore eliminating the need for collecting, storing, and manually labeling user data. While important topics such as the FL training algorithm, non-IID-ness, and Differential Privacy have been well studied in the literature, this paper focuses on two challenges of practical importance for improving on-device ASR: the lack of ground-truth transcriptions and the scarcity of compute resource and network bandwidth on edge devices. First, we propose a FL system for on-device ASR domain adaptation with full self-supervision, which uses self-labeling together with data augmentation and filtering techniques. The system can improve a strong Emformer-Transducer based ASR model pretrained on out-of-domain data, using in-domain audio without any ground-truth transcriptions. Second, to reduce the training cost, we propose a self-restricted RNN Transducer (SR-RNN-T) loss, a variant of alignment-restricted RNN-T that uses Viterbi alignments from self-supervision. To further reduce the compute and network cost, we systematically explore adapting only a subset of weights in the Emformer-Transducer. Our best training recipe achieves a $12.9\%$ relative WER reduction over the strong out-of-domain baseline, which equals $70\%$ of the reduction achievable with full human supervision and centralized training.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here