Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems

29 Dec 2015Colin RaffelDaniel P. W. Ellis

We propose a simplified model of attention which is applicable to feed-forward neural networks and demonstrate that the resulting model can solve the synthetic "addition" and "multiplication" long-term memory problems for sequence lengths which are both longer and more widely varying than the best published results for these tasks...

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet