FenceBox: A Platform for Defeating Adversarial Examples with Data Augmentation Techniques

3 Dec 2020  ·  Han Qiu, Yi Zeng, Tianwei Zhang, Yong Jiang, Meikang Qiu ·

It is extensively studied that Deep Neural Networks (DNNs) are vulnerable to Adversarial Examples (AEs). With more and more advanced adversarial attack methods have been developed, a quantity of corresponding defense solutions were designed to enhance the robustness of DNN models. It has become a popularity to leverage data augmentation techniques to preprocess input samples before inference to remove adversarial perturbations. By obfuscating the gradients of DNN models, these approaches can defeat a considerable number of conventional attacks. Unfortunately, advanced gradient-based attack techniques (e.g., BPDA and EOT) were introduced to invalidate these preprocessing effects. In this paper, we present FenceBox, a comprehensive framework to defeat various kinds of adversarial attacks. FenceBox is equipped with 15 data augmentation methods from three different categories. We comprehensively evaluated that these methods can effectively mitigate various adversarial attacks. FenceBox also provides APIs for users to easily deploy the defense over their models in different modes: they can either select an arbitrary preprocessing method, or a combination of functions for a better robustness guarantee, even under advanced adversarial attacks. We open-source FenceBox, and expect it can be used as a standard toolkit to facilitate the research of adversarial attacks and defenses.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here