Few-Shot Video Object Detection

30 Apr 2021  ·  Qi Fan, Chi-Keung Tang, Yu-Wing Tai ·

We introduce Few-Shot Video Object Detection (FSVOD) with three important contributions: 1) a large-scale video dataset FSVOD-500 comprising of 500 classes with class-balanced videos in each category for few-shot learning; 2) a novel Tube Proposal Network (TPN) to generate high-quality video tube proposals to aggregate feature representation for the target video object; 3) a strategically improved Temporal Matching Network (TMN+) to match representative query tube features and supports with better discriminative ability. Our TPN and TMN+ are jointly and end-to-end trained... Extensive experiments demonstrate that our method produces significantly better detection results on two few-shot video object detection datasets compared to image-based methods and other naive video-based extensions. Codes and datasets will be released at https://github.com/fanq15/FewX. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods