Fill it up: Exploiting partial dependency annotations in a minimum spanning tree parser

26 Nov 2016 Liang Sun Jason Mielens Jason Baldridge

Unsupervised models of dependency parsing typically require large amounts of clean, unlabeled data plus gold-standard part-of-speech tags. Adding indirect supervision (e.g. language universals and rules) can help, but we show that obtaining small amounts of direct supervision - here, partial dependency annotations - provides a strong balance between zero and full supervision... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet