Finding Convincing Arguments Using Scalable Bayesian Preference Learning

TACL 2018 Edwin SimpsonIryna Gurevych

We introduce a scalable Bayesian preference learning method for identifying convincing arguments in the absence of gold-standard rat- ings or rankings. In contrast to previous work, we avoid the need for separate methods to perform quality control on training data, predict rankings and perform pairwise classification... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.