Finding Modes by Probabilistic Hypergraphs Shifting

12 Apr 2017 Yang Wang Lin Wu

In this paper, we develop a novel paradigm, namely hypergraph shift, to find robust graph modes by probabilistic voting strategy, which are semantically sound besides the self-cohesiveness requirement in forming graph modes. Unlike the existing techniques to seek graph modes by shifting vertices based on pair-wise edges (i.e, an edge with $2$ ends), our paradigm is based on shifting high-order edges (hyperedges) to deliver graph modes... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet