Finding Numerical Solutions of Diophantine Equations using Ant Colony Optimization

4 Jun 2013  ·  Siby Abraham, Sugata Sanyal, Mukund Sanglikar ·

The paper attempts to find numerical solutions of Diophantine equations, a challenging problem as there are no general methods to find solutions of such equations. It uses the metaphor of foraging habits of real ants. The ant colony optimization based procedure starts with randomly assigned locations to a fixed number of artificial ants. Depending upon the quality of these positions, ants deposit pheromone at the nodes. A successor node is selected from the topological neighborhood of each of the nodes based on this stochastic pheromone deposit. If an ant bumps into an already encountered node, the pheromone is updated correspondingly. A suitably defined pheromone evaporation strategy guarantees that premature convergence does not take place. The experimental results, which compares with those of other machine intelligence techniques, validate the effectiveness of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here