Finding Robust Itemsets Under Subsampling

18 Feb 2019  ·  Nikolaj Tatti, Fabian Moerchen, Toon Calders ·

Mining frequent patterns is plagued by the problem of pattern explosion making pattern reduction techniques a key challenge in pattern mining. In this paper we propose a novel theoretical framework for pattern reduction. We do this by measuring the robustness of a property of an itemset such as closedness or non-derivability. The robustness of a property is the probability that this property holds on random subsets of the original data. We study four properties: if an itemset is closed, free, non-derivable or totally shattered, and demonstrate how to compute the robustness analytically without actually sampling the data. Our concept of robustness has many advantages: Unlike statistical approaches for reducing patterns, we do not assume a null hypothesis or any noise model and in contrast to noise tolerant or approximate patterns, the robust patterns for a given property are always a subset of the patterns with this property. If the underlying property is monotonic, then the measure is also monotonic, allowing us to efficiently mine robust itemsets. We further derive a parameter-free technique for ranking itemsets that can be used for top-$k$ approaches. Our experiments demonstrate that we can successfully use the robustness measure to reduce the number of patterns and that ranking yields interesting itemsets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here