Finding the Optimal Network Depth in Classification Tasks

17 Apr 2020  ·  Bartosz Wójcik, Maciej Wołczyk, Klaudia Bałazy, Jacek Tabor ·

We develop a fast end-to-end method for training lightweight neural networks using multiple classifier heads. By allowing the model to determine the importance of each head and rewarding the choice of a single shallow classifier, we are able to detect and remove unneeded components of the network. This operation, which can be seen as finding the optimal depth of the model, significantly reduces the number of parameters and accelerates inference across different hardware processing units, which is not the case for many standard pruning methods. We show the performance of our method on multiple network architectures and datasets, analyze its optimization properties, and conduct ablation studies.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here