Finding the Stochastic Shortest Path with Low Regret: The Adversarial Cost and Unknown Transition Case

10 Feb 2021  ·  Liyu Chen, Haipeng Luo ·

We make significant progress toward the stochastic shortest path problem with adversarial costs and unknown transition. Specifically, we develop algorithms that achieve $\widetilde{O}(\sqrt{S^2ADT_\star K})$ regret for the full-information setting and $\widetilde{O}(\sqrt{S^3A^2DT_\star K})$ regret for the bandit feedback setting, where $D$ is the diameter, $T_\star$ is the expected hitting time of the optimal policy, $S$ is the number of states, $A$ is the number of actions, and $K$ is the number of episodes. Our work strictly improves (Rosenberg and Mansour, 2020) in the full information setting, extends (Chen et al., 2020) from known transition to unknown transition, and is also the first to consider the most challenging combination: bandit feedback with adversarial costs and unknown transition. To remedy the gap between our upper bounds and the current best lower bounds constructed via a stochastically oblivious adversary, we also propose algorithms with near-optimal regret for this special case.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here