Finding the way from ä to a: Sub-character morphological inflection for the SIGMORPHON 2018 Shared Task

15 Sep 2018  ·  Fynn Schröder, Marcel Kamlot, Gregor Billing, Arne Köhn ·

In this paper we describe the system submitted by UHH to the CoNLL--SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection. We propose a neural architecture based on the concepts of UZH (Makarov et al., 2017), adding new ideas and techniques to their key concept and evaluating different combinations of parameters. The resulting system is a language-agnostic network model that aims to reduce the number of learned edit operations by introducing equivalence classes over graphical features of individual characters. We try to pinpoint advantages and drawbacks of this approach by comparing different network configurations and evaluating our results over a wide range of languages.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here