Fine-tuning and Sampling Strategies for Multimodal Role Labeling of Entities under Class Imbalance

We propose our solution to the multimodal semantic role labeling task from the CONSTRAINT’22 workshop. The task aims at classifying entities in memes into classes such as “hero” and “villain”. We use several pre-trained multi-modal models to jointly encode the text and image of the memes, and implement three systems to classify the role of the entities. We propose dynamic sampling strategies to tackle the issue of class imbalance. Finally, we perform qualitative analysis on the representations of the entities.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here