Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods

We consider derivative-free algorithms for stochastic optimization problems that use only noisy function values rather than gradients, analyzing their finite-sample convergence rates. We show that if pairs of function values are available, algorithms that use gradient estimates based on random perturbations suffer a factor of at most $\sqrt{\dim}$ in convergence rate over traditional stochastic gradient methods, where $\dim$ is the dimension of the problem... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet