Distributed Optimization with Quantized Gradient Descent

20 Nov 2022  ·  Apostolos I. Rikos, Wei Jiang, Themistoklis Charalambous, Karl H. Johansson ·

In this paper, we consider the unconstrained distributed optimization problem, in which the exchange of information in the network is captured by a directed graph topology, thus, nodes can only communicate with their neighbors. Additionally, in our problem, the communication channels among the nodes have limited bandwidth. In order to alleviate this limitation, quantized messages should be exchanged among the nodes. For solving this distributed optimization problem, we combine a gradient descent method with a distributed quantized consensus algorithm (which requires the nodes to exchange quantized messages and converges in a finite number of steps). Specifically, at every optimization step, each node (i) performs a gradient descent step (i.e., subtracts the scaled gradient from its current estimate), and (ii) performs a finite-time calculation of the quantized average of every node's estimate in the network. As a consequence, this algorithm approximately mimics the centralized gradient descent algorithm. We show that our algorithm asymptotically converges to a neighborhood of the optimal solution with linear convergence rate. The performance of the proposed algorithm is demonstrated via simple illustrative examples.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here