Finite-Time Error Bounds For Linear Stochastic Approximation and TD Learning

3 Feb 2019R. SrikantLei Ying

We consider the dynamics of a linear stochastic approximation algorithm driven by Markovian noise, and derive finite-time bounds on the moments of the error, i.e., deviation of the output of the algorithm from the equilibrium point of an associated ordinary differential equation (ODE). We obtain finite-time bounds on the mean-square error in the case of constant step-size algorithms by considering the drift of an appropriately chosen Lyapunov function... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet