Firing rate of the leaky integrate-and-fire neuron with stochastic conductance-based synaptic inputs with short decay times

25 Feb 2020 Oleskiw Timothy D. Bair Wyeth Shea-Brown Eric Brunel Nicolas

We compute the firing rate of a leaky integrate-and-fire (LIF) neuron with stochastic conductance-based inputs in the limit when synaptic decay times are much shorter than the membrane time constant. A comparison of our analytical results to numeric simulations is presented for a range of biophysically-realistic parameters...

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet