First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization

NeurIPS 2017  ·  Aryan Mokhtari, Alejandro Ribeiro ·

This paper studies empirical risk minimization (ERM) problems for large-scale datasets and incorporates the idea of adaptive sample size methods to improve the guaranteed convergence bounds for first-order stochastic and deterministic methods. In contrast to traditional methods that attempt to solve the ERM problem corresponding to the full dataset directly, adaptive sample size schemes start with a small number of samples and solve the corresponding ERM problem to its statistical accuracy. The sample size is then grown geometrically -- e.g., scaling by a factor of two -- and use the solution of the previous ERM as a warm start for the new ERM. Theoretical analyses show that the use of adaptive sample size methods reduces the overall computational cost of achieving the statistical accuracy of the whole dataset for a broad range of deterministic and stochastic first-order methods. The gains are specific to the choice of method. When particularized to, e.g., accelerated gradient descent and stochastic variance reduce gradient, the computational cost advantage is a logarithm of the number of training samples. Numerical experiments on various datasets confirm theoretical claims and showcase the gains of using the proposed adaptive sample size scheme.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here