First Order Methods for Robust Non-negative Matrix Factorization for Large Scale Noisy Data

24 Mar 2014  ·  Jason Gejie Liu, Shuchin Aeron ·

Nonnegative matrix factorization (NMF) has been shown to be identifiable under the separability assumption, under which all the columns(or rows) of the input data matrix belong to the convex cone generated by only a few of these columns(or rows) [1]. In real applications, however, such separability assumption is hard to satisfy. Following [4] and [5], in this paper, we look at the Linear Programming (LP) based reformulation to locate the extreme rays of the convex cone but in a noisy setting. Furthermore, in order to deal with the large scale data, we employ First-Order Methods (FOM) to mitigate the computational complexity of LP, which primarily results from a large number of constraints. We show the performance of the algorithm on real and synthetic data sets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here