First Results from ABRACADABRA-10 cm: A Search for Sub-$μ$eV Axion Dark Matter

29 Oct 2018  ·  Jonathan L. Ouellet, Chiara P. Salemi, Joshua W. Foster, Reyco Henning, Zachary Bogorad, Janet M. Conrad, Joseph A. Formaggio, Yonatan Kahn, Joe Minervini, Alexey Radovinsky, Nicholas L. Rodd, Benjamin R. Safdi, Jesse Thaler, Daniel Winklehner, Lindley Winslow ·

The axion is a promising dark matter candidate, which was originally proposed to solve the strong-CP problem in particle physics. To date, the available parameter space for axion and axion-like particle dark matter is relatively unexplored, particularly at masses $m_a\lesssim1\,\mu$eV. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, $10^{-12}\lesssim m_a\lesssim10^{-6}$ eV. ABRACADABRA-10 cm is a small-scale prototype for a future detector that could be sensitive to the QCD axion. In this Letter, we present the first results from a 1 month search for axions with ABRACADABRA-10 cm. We find no evidence for axion-like cosmic dark matter and set 95% C.L. upper limits on the axion-photon coupling between $g_{a\gamma\gamma}<1.4\times10^{-10}$ GeV$^{-1}$ and $g_{a\gamma\gamma}<3.3\times10^{-9}$ GeV$^{-1}$ over the mass range $3.1\times10^{-10}$ eV - $8.3\times10^{-9}$ eV. These results are competitive with the most stringent astrophysical constraints in this mass range.

PDF Abstract
No code implementations yet. Submit your code now

Categories


High Energy Physics - Experiment Instrumentation and Detectors