First results from the IllustrisTNG simulations: A tale of two elements -- chemical evolution of magnesium and europium

11 Jul 2017  ·  Jill P. Naiman, Annalisa Pillepich, Volker Springel, Enrico Ramirez-Ruiz, Paul Torrey, Mark Vogelsberger, Rüdiger Pakmor, Dylan Nelson, Federico Marinacci, Lars Hernquist, Rainer Weinberger, Shy Genel ·

The distribution of elements in galaxies provides a wealth of information about their production sites and their subsequent mixing into the interstellar medium. Here we investigate the distribution of elements within stars in the IllustrisTNG simulations. In particular, we analyze the abundance ratios of magnesium and europium in Milky Way-like galaxies from the TNG100 simulation (stellar masses ${\log} (M_\star / {\rm M}_\odot) \sim 9.7 - 11.2$). As abundances of magnesium and europium for individual stars in the Milky Way are observed across a variety of spatial locations and metallicities, comparison with the stellar abundances in our more than $850$ Milky Way-like galaxies provides stringent constraints on our chemical evolutionary methods. To this end we use the magnesium to iron ratio as a proxy for the effects of our SNII and SNIa metal return prescription, and a means to compare our simulated abundances to a wide variety of galactic observations. The europium to iron ratio tracks the rare ejecta from neutron star -- neutron star mergers, the assumed primary site of europium production in our models, which in turn is a sensitive probe of the effects of metal diffusion within the gas in our simulations. We find that europium abundances in Milky Way-like galaxies show no correlation with assembly history, present day galactic properties, and average galactic stellar population age. In general, we reproduce the europium to iron spread at low metallicities observed in the Milky Way, with the level of enhancement being sensitive to gas properties during redshifts $z \approx 2-4$. We show that while the overall normalization of [Eu/Fe] is susceptible to resolution and post-processing assumptions, the relatively large spread of [Eu/Fe] at low [Fe/H] when compared to that at high [Fe/H] is very robust.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Astrophysics of Galaxies