Fisher Information Guidance for Learned Time-of-Flight Imaging

CVPR 2022  ·  Jiaqu Li, Tao Yue, Sijie Zhao, Xuemei Hu ·

Indirect Time-of-Flight (ToF) imaging is widely applied in practice for its superiorities on cost and spatial resolution. However, lower signal-to-noise ratio (SNR) of measurement leads to larger error in ToF imaging, especially for imaging scenes with strong ambient light or long distance. In this paper, we propose a Fisher-information guided framework to jointly optimize the coding functions (light modulation and sensor demodulation functions) and the reconstruction network of iToF imaging, with the supervision of the proposed discriminative fisher loss. By introducing the differentiable modeling of physical imaging process considering various real factors and constraints, e.g., light-falloff with distance, physical implementability of coding functions, etc., followed by a dual-branch depth reconstruction neural network, the proposed method could learn the optimal iToF imaging system in an end-to-end manner. The effectiveness of the proposed method is extensively verified with both simulations and prototype experiments.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here